skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blanchard, Peter_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an extensive Hubble Space Telescope rest-frame UV imaging study of the locations of Type I superluminous supernovae (SLSNe) within their host galaxies. The sample includes 65 SLSNe with detected host galaxies in the redshift rangez≈ 0.05–2. Using precise astrometric matching with SN images, we determine the distributions of the physical and host-normalized offsets relative to the host centers, as well as the fractional flux distribution relative to the underlying UV light distributions. We find that the host-normalized offsets of SLSNe roughly track an exponential disk profile, but exhibit an overabundance of sources with large offsets of 1.5–4 times their hosts' half-light radii. The SLSNe normalized offsets are systematically larger than those of long gamma-ray bursts (LGRBs), and even Type Ib/c and Type II SNe. Furthermore, we find from a Monte Carlo procedure that about 37 8 + 6 % of SLSNe occur in the dimmest regions of their host galaxies, with a median fractional flux value of 0.16, in stark contrast to LGRBs and Type Ib/c and Type II SNe. We do not detect any significant trends in the locations of SLSNe as a function of redshift, or as a function of explosion and magnetar engine parameters inferred from modeling of their optical light curves. The significant difference in SLSN locations compared to LGRBs (and normal core-collapse SNe) suggests that at least some of their progenitors follow a different evolutionary path. We speculate that SLSNe arise from massive runaway stars from disrupted binary systems, with velocities of ∼102km s−1
    more » « less
  2. Abstract Identifying the sites of r-process nucleosynthesis, a primary mechanism of heavy element production, is a key goal of astrophysics. The discovery of the brightest gamma-ray burst (GRB) to date, GRB 221009A, presented an opportunity to spectroscopically test the idea that r-process elements are produced following the collapse of rapidly rotating massive stars. Here we present James Webb Space Telescope observations of GRB 221009A obtained +168 and +170 rest-frame days after the gamma-ray trigger, and demonstrate that they are well described by a SN 1998bw-like supernova (SN) and power-law afterglow, with no evidence for a component from r-process emission. The SN, with a nickel mass of approximately 0.09 M, is only slightly fainter than the brightness of SN 1998bw at this phase, which indicates that the SN is not an unusual GRB-SN. This demonstrates that the GRB and SN mechanisms are decoupled and that highly energetic GRBs are not likely to produce significant quantities of r-process material, which leaves open the question of whether explosions of massive stars are key sources of r-process elements. Moreover, the host galaxy of GRB 221009A has a very low metallicity of approximately 0.12 Zand strong H2emission at the explosion site, which is consistent with recent star formation, hinting that environmental factors are responsible for its extreme energetics. 
    more » « less
  3. ABSTRACT We present the most comprehensive catalogue to date of Type I superluminous supernovae (SLSNe), a class of stripped-envelope supernovae (SNe) characterized by exceptionally high luminosities. We have compiled a sample of 262 SLSNe reported through 2022 December 31. We verified the spectroscopic classification of each SLSN and collated an exhaustive data set of ultraviolet, optical, and infrared photometry totalling over 30 000 photometric detections. Using these data, we derive observational parameters such as the peak absolute magnitudes, rise and decline time-scales, as well as bolometric luminosities, temperature, and photospheric radius evolution for all SLSNe. Additionally, we model all light curves using a hybrid model that includes contributions from both a magnetar central engine and the radioactive decay of $$^{56}$$Ni. We explore correlations among various physical and observational parameters, and recover the previously found relation between ejecta mass and magnetar spin, as well as the overall progenitor pre-explosion mass distribution with a peak at $$\approx 6.5$$ M$$_\odot$$. We find no significant redshift dependence for any parameter, and no evidence for distinct subtypes of SLSNe. We find that only a small fraction of SLSNe, $$\lt 3$$ per cent, are best fit with a significant radioactive decay component $$\gtrsim 50$$ per cent. We provide several analytical tools designed to simulate typical SLSN light curves across a broad range of wavelengths and phases, enabling accurate K-corrections, bolometric scaling calculations, and inclusion of SLSNe in survey simulations or future comparison works. 
    more » « less